掌握三大设计模式,构建协同智能体集群,电商场景下单转化率提升35%
MAS核心价值:
复杂任务解耦
领域专家分工协作
系统容错性提升
from autogen import AssistantAgent, UserProxyAgent, GroupChatManager # 1. 创建智能体群组 pricing_agent = AssistantAgent( name="定价专家", system_message="你负责动态定价策略,分析竞品价格和用户画像", llm_config={"config_list": [...]} ) inventory_agent = AssistantAgent( name="库存管家", system_message="你管理实时库存数据,预测补货需求", llm_config={"config_list": [...]} ) user_profile_agent = AssistantAgent( name="用户分析官", system_message="你分析用户行为和购买历史", llm_config={"config_list": [...]} ) # 2. 创建集中控制器 group_chat_manager = GroupChatManager( name="促销指挥中心", agents=[pricing_agent, inventory_agent, user_profile_agent], max_round=10 ) # 3. 用户代理发起任务 user_proxy = UserProxyAgent( name="用户代理", human_input_mode="NEVER", code_execution_config=False ) # 4. 执行协同任务 user_proxy.initiate_chat( manager=group_chat_manager, message="为VIP用户设计iPhone 15促销方案,目标提升销量20%" )
控制流程:
[指挥中心] → 分配任务: 1. 定价专家:分析竞品价格 2. 用户分析官:提取VIP用户特征 3. 库存管家:检查iPhone 15库存 [定价专家] → 建议:限时折扣$799(原价$899) [用户分析官] → 建议:赠送AirPods(VIP用户偏好) [库存管家] → 警告:库存仅剩500台,需限购 [指挥中心] → 生成最终方案: "VIP专享:iPhone 15限时$799,赠AirPods(每人限购2台)"
import pika import threading # RabbitMQ连接设置 connection = pika.BlockingConnection( pika.ConnectionParameters('localhost') ) channel = connection.channel() # 声明消息交换中心 channel.exchange_declare(exchange='agent_comm', exchange_type='topic') # 1. 定价智能体 def pricing_agent(): channel.queue_declare(queue='pricing_in') channel.queue_bind(exchange='agent_comm', queue='pricing_in', routing_key='price.*') def callback(ch, method, properties, body): print(f"定价收到: {body}") # 处理逻辑... ch.basic_publish(exchange='agent_comm', routing_key='inventory.update', body="新价格策略") channel.basic_consume(queue='pricing_in', on_message_callback=callback, auto_ack=True) channel.start_consuming() # 2. 库存智能体 def inventory_agent(): # 类似实现... # 启动智能体线程 threading.Thread(target=pricing_agent).start() threading.Thread(target=inventory_agent).start() # 发送任务 channel.basic_publish( exchange='agent_comm', routing_key='price.request', body="用户A请求MacBook Pro报价" )
消息路由拓扑:
import torch from torch import nn from fl_aggregator import FederatedAveraging # 1. 医院本地模型 class HospitalModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(10, 2) # 简化示例 def forward(self, x): return self.linear(x) # 2. 联邦聚合器 class MedicalFLAggregator: def __init__(self): self.global_model = HospitalModel() self.hospital_models = {} def receive_update(self, hospital_id, model_state): self.hospital_models[hospital_id] = model_state def aggregate(self): # 安全聚合(避免泄露原始数据) avg_state = {} for key in self.global_model.state_dict().keys(): params = [model[key] for model in self.hospital_models.values()] avg_state[key] = torch.stack(params).mean(dim=0) self.global_model.load_state_dict(avg_state) return self.global_model.state_dict() # 3. 医院节点训练 def hospital_train(hospital_id, local_data): local_model = HospitalModel() # 加载全局模型参数 local_model.load_state_dict(global_params) # 本地训练(数据不出院) optimizer = torch.optim.SGD(local_model.parameters(), lr=0.01) for epoch in range(10): for x, y in local_data: loss = nn.CrossEntropyLoss()(local_model(x), y) loss.backward() optimizer.step() # 上传参数更新 aggregator.receive_update(hospital_id, local_model.state_dict())
# 基于AutoGen的增强版协同 from autogen import ConversableAgent class PricingAgent(ConversableAgent): def __init__(self): super().__init__("pricing_agent") self.register_function(self.get_dynamic_price) def get_dynamic_price(self, product_id, user_tier): """ 动态定价算法: - 基础价格 × 用户等级系数 - 竞品价格监测 - 库存压力因子 """ base_price = db.get_price(product_id) tier_factor = {"regular":1.0, "vip":0.9, "svip":0.8}[user_tier] comp_price = scrape_competitor(product_id) inventory_pressure = inventory_agent.get_pressure(product_id) final_price = base_price * tier_factor * 0.95 if comp_price < base_price else base_price return max(final_price, base_price * 0.7) # 保底折扣 # 智能体协同协议 agents = [ PricingAgent(), InventoryAgent(), UserProfileAgent() ] def collaborative_promotion(user_query): # 1. 用户分析 user_tier = user_profile_agent.analyze_user(user_query.user_id) # 2. 并行获取数据 with ThreadPoolExecutor() as executor: price_future = executor.submit( pricing_agent.get_dynamic_price, user_query.product_id, user_tier ) stock_future = executor.submit( inventory_agent.check_stock, user_query.product_id ) # 3. 生成促销方案 promotion = f""" {user_tier}专享优惠: - 价格:${price_future.result():.2f} - 库存:{stock_future.result()['available']}件 - 赠品:{user_profile_agent.get_gift_suggestion(user_query.user_id)} """ return promotion
# Prometheus监控指标 AGENT_REQUEST_COUNTER = Counter( 'agent_requests_total', 'Total agent requests', ['agent_type', 'status'] ) AGENT_LATENCY = Summary( 'agent_request_latency_seconds', 'Agent processing latency' ) @AGENT_LATENCY.time() def handle_request(request): try: result = agent.process(request) AGENT_REQUEST_COUNTER.labels(agent_type="pricing", status="success").inc() return result except Exception: AGENT_REQUEST_COUNTER.labels(agent_type="pricing", status="fail").inc()
Grafana看板关键指标:
智能体请求量/成功率
平均响应延迟
资源利用率(CPU/内存)
消息队列深度
智能体通信死锁
症状:A等待B的响应,B等待A的输出
解决方案:
# 添加通信超时 def send_message(receiver, msg, timeout=5): start = time.time() while not receiver.has_response(): if time.time() - start > timeout: raise TimeoutError("智能体响应超时") time.sleep(0.1)
分布式状态不一致
场景:库存智能体显示有货,实际已售罄
解决方案:
# 实现分布式事务 def update_inventory(product_id, delta): with distributed_lock(product_id): # 获取分布式锁 current = db.get_inventory(product_id) if current + delta < 0: raise InventoryError("库存不足") db.update_inventory(product_id, current+delta)
联邦学习梯度泄露
风险:从梯度反推原始数据
防护方案:
# 添加差分隐私噪声 def secure_aggregate(gradients): noise = torch.randn_like(gradients) * 0.1 # 添加高斯噪声 return gradients + noise
每个智能体保持单一职责
消息协议标准化(JSON Schema)
关键操作需幂等设计
生产系统必须添加速率限制
遵循此指南,可构建高可靠多智能体系统,建议从电商促销或智能客服场景切入实践!更多AI大模型应用开发学习视频内容和资料,尽在聚客AI学院。