Docker快速启动(推荐):
docker run -d --name langflow \ -p 7860:7860 \ -v ~/langflow_data:/data \ --restart always \ langflowai/langflow:latest
本地开发环境:
conda create -n langflow python=3.10 conda activate langflow pip install langflow[standard]==1.0.0 langflow run --host 0.0.0.0 --port 7860
云服务部署(AWS示例):
resource "aws_ecs_task_definition" "langflow" { family = "langflow" container_definitions = jsonencode([{ name = "langflow", image = "langflowai/langflow:latest", portMappings = [{ containerPort = 7860 }] }]) }
客户服务自动化流程:
1.用户问题输入 → 2. 意图识别 → 3. 知识库检索 → 4. 工单生成 → 5. 人工审核
OpenAI配置:
from langflow import CustomComponent from langchain_openai import ChatOpenAI class GPT4Component(CustomComponent): def build(self, temperature: float = 0.7) -> ChatOpenAI: return ChatOpenAI( model="gpt-4-turbo", temperature=self.temperature )
HuggingFace本地模型:
components: - id: hf_model type: HuggingFaceEndpoint params: endpoint_url: "http://localhost:8080" model_name: "BAAI/bge-large-zh"
步骤分解:
拖拽WebLoader
组件配置RSS源
连接RecursiveSplitter
设置分块规则
接入BGE Embedding
生成向量
链接GPT-4 Turbo
生成摘要
配置EmailSender
发送结果
性能优化配置:
{ "WebLoader": {"max_depth": 2}, "RecursiveSplitter": {"chunk_size": 512}, "GPT-4": {"max_tokens": 1000} }
Git集成方案:
cd ~/langflow_data/projects git init git add . git commit -m "v1.0 新闻摘要系统"
自动化备份脚本:
import shutil from datetime import datetime def backup_flow(project_name): timestamp = datetime.now().strftime("%Y%m%d%H%M") backup_dir = f"backups/{project_name}_{timestamp}" shutil.copytree(f"projects/{project_name}", backup_dir)
股票分析组件示例:
from langflow import CustomComponent from yfinance import Ticker class StockAnalyzer(CustomComponent): display_name = "Stock Analyzer" description = "获取实时股票数据并生成分析报告" def build_config(self): return {"symbol": {"type": "str", "required": True}} def build(self, symbol: str) -> str: stock = Ticker(symbol) hist = stock.history(period="1mo") return f""" {symbol}月度分析报告: - 最高价:{hist['High'].max():.2f} - 最低价:{hist['Low'].min():.2f} - 当前价:{hist['Close'][-1]:.2f} """
RESTful接口调用:
curl -X POST "http://localhost:7860/api/v1/run" \ -H "Content-Type: application/json" \ -d '{ "flow_id": "news_summarizer", "input": {"url": "https://news.example.com/rss"} }'
Python SDK集成:
from langflow_api import LangflowClient client = LangflowClient(base_url="http://api.langflow.com") response = client.run_flow( flow_id="customer_service", inputs={"user_query": "订单状态查询"}, timeout=30 ) print(response.outputs)
导出为LangChain代码:
# 在LangFlow界面操作导出 from langchain.chains import SequentialChain from langchain.llms import OpenAI chain = SequentialChain( steps=[ ("loader", WebLoader()), ("processor", GPT4Processor()) ], llm=OpenAI() )
导入现有LangChain项目:
from langflow import import_chain flow = import_chain( chain_object=existing_chain, flow_name="Legacy Migration" ) flow.visualize()
联合调试方案:
from langchain.agents import initialize_agent from langflow.integrations import LangflowAgent tools = [LangflowTool(name="stock_analyzer", flow_id="stock_flow")] agent = initialize_agent( tools, llm=OpenAI(), agent="react-docstore" ) agent.run("AAPL和TSLA的近期走势对比分析")
graph TD A[掌握基础组件] --> B[构建可视化流程] A --> C[开发自定义组件] B --> D[实现业务工作流] C --> D D --> E[集成LangChain生态] E --> F[设计企业级架构]
低代码协作:多人实时协同编辑流程
AutoML集成:自动优化组件参数
边缘计算:适配移动端和IoT设备
推荐实践项目:
电商客服自动化系统
金融研报生成平台
医疗诊断辅助流程
掌握LangFlow需持续实践,最终实现从可视化开发到全栈架构设计的跨越。更多AI大模型应用开发学习内容,尽在聚客AI学院