核心特性:
模块解耦:各服务独立部署(如RAG/Agent/插件)
统一API层:通过标准化接口实现服务协同
动态扩展:根据负载自动伸缩Agent节点
# 版本化文档存储模型 from sqlalchemy import Column, JSON, String class WorkflowVersion(Base): __tablename__ = "workflow_versions" id = Column(String(36), primary_key=True) config = Column(JSON) # 存储YAML工作流配置 snapshot = Column(JSON) # 节点状态快照 created_at = Column(DateTime, default=datetime.utcnow) # 版本回滚操作 def rollback_version(workflow_id, version_id): version = session.query(WorkflowVersion).filter_by(id=version_id).first() load_config(version.config) restore_snapshot(version.snapshot)
实现技术:
使用langchain-plantuml
库捕获Agent决策链
生成PlantUML活动图:
from langchain_plantuml import activity_diagram_callback callback = activity_diagram_callback() agent.run(query, callbacks=[callback]) callback.save_uml_content("agent_flow.puml")
# workflow_config.yaml nodes: - id: data_loader type: CsvFile params: path: "sales_data.csv" - id: analyzer type: PythonAnalyzer script: | import pandas as pd df = pd.read_csv(input) return df.describe() edges: - source: data_loader/output target: analyzer/input triggers: - cron: "0 9 * * *" # 每天9点自动执行
from langgraph.graph import Graph workflow = Graph.from_yaml("workflow_config.yaml") workflow.build() results = workflow.invoke({})
// ReactFlow边配置 const edgeTypes = { "conditional": ConditionalEdge, // 条件边 "dataflow": DataFlowEdge, // 数据流边 "fallback": FallbackEdge // 异常处理边 }; // 条件边实现 if (sourceNode.type === "DECISION") { return <ConditionalEdge condition={data.condition} label={data.label} />; }
import { useDagreLayout } from "@reactflow/dagre-layout"; const { nodes, edges } = useDagreLayout({ nodes: rawNodes, edges: rawEdges, options: { rankdir: "TB", // 布局方向(Top-Bottom) align: "UL", // 对齐方式(Upper-Left) ranksep: 100, // 层级间距 nodesep: 50 // 节点间距 } });
一键排版:强制刷新Dagre布局
子流折叠:将复杂节点折叠为子模块
自动对齐:Ctrl+A全选后触发网格对齐
def workflow_to_tool(workflow): tool_desc = f""" {workflow.name}工具功能: 1. 输入:{workflow.input_params} 2. 处理步骤: """ for node in workflow.nodes: tool_desc += f" - {node.type}: {node.description}\n" return Tool( name=workflow.name, func=workflow.run, description=tool_desc ) # 注册到Agent agent.tools.append(workflow_to_tool(sales_analysis_flow))
<template> <div class="container"> <WorkflowCanvas :nodes="nodes" :edges="edges"/> <ToolPalette @drag-start="handleDragStart"/> <PropertyPanel :selected-node="selectedNode"/> </div> </template> <script> import { VueFlow, useVueFlow } from '@vue-flow/core' export default { components: { VueFlow }, setup() { const { addNodes, onNodeDrag } = useVueFlow() // 节点拖拽事件处理 onNodeDrag((event, node) => { /* 实时更新位置 */ }) } } </script>
单元测试:对单个节点Mock输入/输出
集成测试:验证节点间数据流正确性
压力测试:使用Locust模拟100+并发请求
nodes: - id: fetch_transaction type: APILoader endpoint: "/transactions" - id: fraud_detect type: LLMChain prompt: "分析交易{data}是否存在欺诈模式" - id: alert type: Webhook url: "https://alert.system" edges: - source: fetch_transaction/output target: fraud_detect/input - source: fraud_detect/output target: alert/input condition: "{{score}} > 0.9"
注:所有案例基于2025年最新技术栈验证(VueFlow 2.0+、LangChain 0.2+)更多AI大模型应用开发学习视频内容和资料,尽在聚客AI学院。