当单智能体面临复杂任务时,容易陷入思维混乱和工具滥用。多智能体系统通过角色分工解决三大核心问题:
模块化:各Agent专注特定能力域(如搜索/编码/审核)
错误隔离:单个Agent故障不影响整体系统
解释性:每个决策节点可追溯
class Tool: def __init__(self, name, func, params): self.name = name # 工具名称 self.func = func # 底层函数 self.params = params # 参数规范 def validate_input(self, inputs): # 类型检查与转换 if type(inputs) != self.params["type"]: try: return self.params["type"](inputs) except: raise ValueError("Invalid input type") def execute(self, **kwargs): validated = {k: self.validate_input(v) for k,v in kwargs.items()} return self.func(**validated)
典型工具示例:
WebSearchTool: 网络信息获取
CodeGenerator: 代码生成
DataAnalyzer: 结构化数据分析
class Agent: def __init__(self, role, tools, llm_backend): self.role = role # 角色定义 self.tools = {t.name:t for t in tools} # 工具集 self.llm = llm_backend self.memory = [] # 思维链存储 def react_loop(self, task): while not self._is_task_done(): thought = self._generate_thought(task) if "ACTION" in thought: tool_name, params = self._parse_action(thought) result = self.tools[tool_name].execute(**params) self.memory.append(f"Observation: {result}") else: return thought # 最终输出
关键特性:
内置ReAct决策循环
动态工具选择机制
思维链持久化存储
class Crew: def __init__(self): self.agents = {} # 注册的智能体 self.dependencies = {} # 依赖图 def add_agent(self, name, agent, deps=[]): self.agents[name] = agent self.dependencies[name] = deps def execute(self, input_data): # 拓扑排序解决执行顺序 ordered_agents = self._topological_sort() outputs = {} for agent_name in ordered_agents: agent_input = input_data if not outputs else outputs[agent_name] result = self.agents[agent_name].react_loop(agent_input) outputs[agent_name] = result return outputs
这是此演示的技术栈:
CrewAI 用于多代理编排。
Cohere 的 CommandR-7B 作为 LLM。
1) 分析师Agent:
接受用户查询。
使用Serper网络搜索工具从互联网获取结果。
汇总结果。
2) 内容撰写Agent:
使用精心整理的结果来准备一篇 polished、出版准备好的文章。
pip install crewai crewai-tools
SERPER_API_KEY=your_serper_api_key COHERE_API_KEY=your_cohere_apikey
import os import streamlit as st from crewai import Agent, Task, Crew, LLM from crewai_tools import SerperDevTool from dotenv import load_dotenv # Load environment variables load_dotenv() # Streamlit page config st.set_page_config(page_title="AI News Generator", page_icon="📰", layout="wide") # Title and description st.title("🤖 AI News Generator, powered by CrewAI and Cohere's Command R7B") st.markdown("Generate comprehensive blog posts about any topic using AI agents.") # Sidebar with st.sidebar: st.header("Content Settings") # Make the text input take up more space topic = st.text_area( "Enter your topic", height=100, placeholder="Enter the topic you want to generate content about..." ) # Add more sidebar controls if needed st.markdown("### Advanced Settings") temperature = st.slider("Temperature", 0.0, 1.0, 0.7) # Add some spacing st.markdown("---") # Make the generate button more prominent in the sidebar generate_button = st.button("Generate Content", type="primary", use_container_width=True) # Add some helpful information with st.expander("ℹ️ How to use"): st.markdown(""" 1. Enter your desired topic in the text area above 2. Adjust the temperature if needed (higher = more creative) 3. Click 'Generate Content' to start 4. Wait for the AI to generate your article 5. Download the result as a markdown file """) def generate_content(topic): llm = LLM( model="command-r", temperature=0.7 ) search_tool = SerperDevTool(n_results=10) # First Agent: Senior Research Analyst senior_research_analyst = Agent( role="Senior Research Analyst", goal=f"Research, analyze, and synthesize comprehensive information on {topic} from reliable web sources", backstory="You're an expert research analyst with advanced web research skills. " "You excel at finding, analyzing, and synthesizing information from " "across the internet using search tools. You're skilled at " "distinguishing reliable sources from unreliable ones, " "fact-checking, cross-referencing information, and " "identifying key patterns and insights. You provide " "well-organized research briefs with proper citations " "and source verification. Your analysis includes both " "raw data and interpreted insights, making complex " "information accessible and actionable.", allow_delegation=False, verbose=True, tools=[search_tool], llm=llm ) # Second Agent: Content Writer content_writer = Agent( role="Content Writer", goal="Transform research findings into engaging blog posts while maintaining accuracy", backstory="You're a skilled content writer specialized in creating " "engaging, accessible content from technical research. " "You work closely with the Senior Research Analyst and excel at maintaining the perfect " "balance between informative and entertaining writing, " "while ensuring all facts and citations from the research " "are properly incorporated. You have a talent for making " "complex topics approachable without oversimplifying them.", allow_delegation=False, verbose=True, llm=llm ) # Research Task research_task = Task( description=(""" 1. Conduct comprehensive research on {topic} including: - Recent developments and news - Key industry trends and innovations - Expert opinions and analyses - Statistical data and market insights 2. Evaluate source credibility and fact-check all information 3. Organize findings into a structured research brief 4. Include all relevant citations and sources """), expected_output="""A detailed research report containing: - Executive summary of key findings - Comprehensive analysis of current trends and developments - List of verified facts and statistics - All citations and links to original sources - Clear categorization of main themes and patterns Please format with clear sections and bullet points for easy reference.""", agent=senior_research_analyst ) # Writing Task writing_task = Task( description=(""" Using the research brief provided, create an engaging blog post that: 1. Transforms technical information into accessible content 2. Maintains all factual accuracy and citations from the research 3. Includes: - Attention-grabbing introduction - Well-structured body sections with clear headings - Compelling conclusion 4. Preserves all source citations in [Source: URL] format 5. Includes a References section at the end """), expected_output="""A polished blog post in markdown format that: - Engages readers while maintaining accuracy - Contains properly structured sections - Includes Inline citations hyperlinked to the original source url - Presents information in an accessible yet informative way - Follows proper markdown formatting, use H1 for the title and H3 for the sub-sections""", agent=content_writer ) # Create Crew crew = Crew( agents=[senior_research_analyst, content_writer], tasks=[research_task, writing_task], verbose=True ) return crew.kickoff(inputs={"topic": topic}) # Main content area if generate_button: with st.spinner('Generating content... This may take a moment.'): try: result = generate_content(topic) st.markdown("### Generated Content") st.markdown(result) # Add download button st.download_button( label="Download Content", data=result.raw, file_name=f"{topic.lower().replace(' ', '_')}_article.md", mime="text/markdown" ) except Exception as e: st.error(f"An error occurred: {str(e)}") # Footer st.markdown("---") st.markdown("Built with CrewAI, Streamlit and powered by Cohere's Command R7B")
# 并行执行独立Agent with concurrent.futures.ThreadPoolExecutor() as executor: futures = {executor.submit(agent.react_loop): agent for agent in independent_agents}
与传统框架对比
适用场景:需要深度定制的复杂工作流推荐原生实现,快速原型建议使用CrewAI