LangGraph 是基于 LangChain 的扩展框架,专为构建有状态(Stateful)的大模型工作流而设计。它通过图结构(Graph)定义多个执行节点(Node)及其依赖关系,支持复杂任务编排,尤其适合多智能体协作、长对话管理等场景。
状态持久化:自动维护任务执行过程中的上下文状态
灵活编排:支持条件分支、循环、并行等控制流
容错机制:内置错误重试、回滚策略
可视化调试:自动生成执行流程图
from langgraph.graph import StateGraph, END from typing import TypedDict, Annotated import operator # 定义状态结构 class AgentState(TypedDict): input: str result: Annotated[list, operator.add] # 自动累积结果 # 初始化图 graph = StateGraph(AgentState) # 添加节点与边(后续章节详解) ... # 编译并运行 app = graph.compile() result = app.invoke({"input": "任务描述"})
使用 Pydantic模型 或 TypedDict 明确状态结构:
from pydantic import BaseModel class ProjectState(BaseModel): requirements: str draft_versions: list[str] current_step: int # 初始化状态 initial_state = ProjectState( requirements="开发一个聊天机器人", draft_versions=[], current_step=0 )
LangGraph通过注解(Annotation)实现状态字段的自动更新:
from langgraph.graph import add_messages class DialogState(TypedDict): history: Annotated[list, add_messages] # 自动追加消息 def user_node(state: DialogState): return {"history": ["用户: 你好"]} def bot_node(state: DialogState): return {"history": ["AI: 您好,有什么可以帮您?"]}
节点是工作流的基本单元,接收状态并返回更新:
from langchain_core.runnables import RunnableLambda # 简单节点 def data_loader(state: dict): return {"data": load_dataset(state["input"])} # 包含LLM调用的节点 llm_node = RunnableLambda( lambda state: {"answer": chat_model.invoke(state["question"])} ) # 注册节点 graph.add_node("loader", data_loader) graph.add_node("llm", llm_node)
def designer_agent(state): return {"design": "界面草图"} def developer_agent(state): return {"code": "实现代码"} # 并行执行 graph.add_node("designer", designer_agent) graph.add_node("developer", developer_agent) graph.add_edge("designer", "reviewer") graph.add_edge("developer", "reviewer")
根据状态值动态路由:
from langgraph.graph import conditional_edge def should_continue(state): return "continue" if state["step"] < 5 else "end" graph.add_conditional_edges( source="decision_node", path_map={"continue": "next_node", "end": END}, condition=should_continue )
graph.add_edge("start", "process") graph.add_conditional_edges( "process", lambda s: "loop" if s["count"] < 3 else "end", {"loop": "process", "end": END} )
from langgraph.retry import RetryPolicy policy = RetryPolicy( max_retries=3, backoff_factor=1.5, retry_on=(Exception,) ) graph.add_node( "api_call", api_wrapper.with_retry(policy) )
def compensation_action(state): # 执行补偿操作 rollback_transaction(state["tx_id"]) return {"status": "rolled_back"} graph.add_edge("failed_node", "compensation") graph.add_edge("compensation", END)
注:本文代码基于LangGraph 0.1+版本实现,需预先安装依赖:
pip install langgraph langchain pydantic
更多AI大模型应用开发学习内容,尽在聚客AI学院。